Secure Multi-Player Protocols: Fundamentals, Generality, and Efficiency

نویسنده

  • Serge Fehr
چکیده

While classically cryptography is concerned with the problem of private communication among two entities, say players, in modern cryptography multi-player protocols play an important role. And among these, it is probably fair to say that secret sharing, and its stronger version verifiable secret sharing (VSS), as well as multi-party computation (MPC) belong to the most appealing and/or useful ones. The former two are basic tools to achieve better robustness of cryptographic schemes against malfunction or misuse by “decentralizing” the security from one single to a whole group of individuals (captured by the term threshold cryptography). The latter allows—at least in principle—to execute any collaboration among a group of players in a secure way that guarantees the correctness of the outcome but simultaneously respects the privacy of the participants. In this work, we study three aspects of secret sharing, VSS and MPC, which we denote by fundamentals, generality, and efficiency. By fundamentals we mean the quest for understanding why a protocol works and is secure in abstract (and hopefully simple) mathematical terms. By generality we mean generality with respect to the underlying mathematical structure, in other words, minimizing the mathematical axioms required to do some task. And efficiency of course deals with the improvement of protocols with respect to some meaningful complexity measure. We briefly summarize our main results. (1) We give a complete characterization of blackbox secret sharing in terms of simple algebraic conditions on the integer sharing coefficients, and we propose a black-box secret sharing scheme with minimal expansion factor. Note that, in contrast to the classical field-based secret sharing schemes, a black-box secret sharing scheme allows to share a secret sampled from an arbitrary Abelian group and requires only black-box access to the group operations and to random group elements. Such a scheme may be very useful in the construction of threshold cryptosystems based on groups with secret order (like RSA). (2) We show that without loss of efficiency, MPC can be based on arbitrary finite rings. This is in sharp contrast to the literature where essentially all MPC protocols require a much stronger mathematical structure, namely a field. Apart from its theoretical value, this can lead to efficiency improvements since it allows a greater freedom in the (mathematical) representation of the task that needs to be securely executed. (3) We propose a unified treatment of perfectly secure linear VSS and distributed commitments (a weaker version of the former), and we show that the security of such a scheme can be reduced to a linear algebra condition. The security of all known schemes follows as corollaries whose proofs are pure linear algebra arguments, in contrast

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Multi-party Computation over Rings

Secure multi-party computation (MPC) is an active research area, and a wide range of literature can be found nowadays suggesting improvements and generalizations of existing protocols in various directions. However, all current techniques for secure MPC apply to functions that are represented by (boolean or arithmetic) circuits over finite fields. We are motivated by two limitations of these te...

متن کامل

Efficient Secure Multi-party Computation

Since the introduction of secure multi-party computation, all proposed protocols that provide security against cheating players suffer from very high communication complexities. The most efficient unconditionally secure protocols among n players, tolerating cheating by up to t < n/3 of them, require communicating O(n6) field elements for each multiplication of two elements, even if only one pla...

متن کامل

Complete Characterization of AdversariesTolerable in Secure Multi - Party Computation

The classical results in unconditional multi-party computation among a set of n players state that less than n=2 passive or less than n=3 active adversaries can be tolerated; assuming a broadcast channel the threshold for active adversaries is n=2. Strictly generalizing these results we specify the set of potentially misbehaving players as an arbitrary set of subsets of the player set. We prove...

متن کامل

Efficient Multi-party Computation with Information-theoretic Security

Multi-party computation (MPC) enables a set of n mutually distrusting players to perform some computation on their private inputs, such that the correctness of the output as well as the privacy of the honest players’ inputs is guaranteed even in the presence of an adversary corrupting up to t of the players and making them misbehave arbitrarily. In this thesis, we focus on the efficiency of mul...

متن کامل

Efficient Secure Computation for Real-world Settings and Security Models

Title of thesis: EFFICIENT SECURE COMPUTATION FOR REAL-WORLD SETTINGS AND SECURITY MODELS Alexis J. Malozemoff, Doctor of Philosophy, 2016 Thesis directed by: Professor Jonathan Katz Department of Computer Science Secure computation involves multiple parties computing a common function while keeping their inputs private, and is a growing field of cryptography due to its potential for maintainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003